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Abstract. We investigate one-point algebraic geometric codes CL(D,G)

associated to maximal curves recently characterized by Tafazolian and
Torres given by the affine equation yl = f(x), where f(x) is a separable
polynomial of degree r relatively prime to l. We mainly focus on the
curve y4 = x3 + x and Picard curves given by the equations y3 = x4 − x

and y3 = x4 − 1. As a result, we obtain exact value of minimum distance
in several cases and get many records that don’t exist in MinT tables
(tables of optimal parameters for linear codes), such as codes over F72

of dimension less than 36. Moreover, using maximal Hermitian curves
and their sub-covers, we obtain a necessary and sufficient condition for
self-orthogonality and Hermitian self-orthogonally of CL(D,G).
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1. Introduction

Algebraic geometric codes (AG codes) are a type of linear error-correcting
codes introduced by Goppa in 1981 [9, 10] using concepts from algebraic geom-
etry.
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Throughout this paper, by a curve we mean a geometrically irreducible,
projective non-singular curve defined over a finite field Fq of characteristic p.
One is often interested in curves C with many rational points. The celebrated
theorem of Weil states that the number N(C) of rational points of a curve C of
genus g over Fq satisfies the inequality:

|N(C)− (q + 1)| ≤ 2gq1/2. (1.1)

This bound is important for many applications such as in coding theory [26]
and elliptic curve cryptography [11]. The curve C is said to be maximal over
Fq2 , if the upper bound in 1.1 is attained, namely:

N(C) = q2 + 1 + 2gq.

From now on, f(x) is a separable polynomial of degree r. The class Cl,r

denotes curve given by the affine equation yl = f(x), where gcd(l, r) = 1. AG
codes over the curves Cl,r have been the subject of many papers, e.g. [19, 25].
In [4], Castellanos, Masuda and Quoos computed the Weierstrass semigroup at
certain totally ramified places and constructed AG codes with good parameters,
specifically on the curves y3 = x5 − x over F25 and y9 = x4 + x2 + x over F64.
In [13], Hu and Yang described bases for the Riemann-Roch spaces associated
to totally ramified places in the Kummer extensions given by yl = f(x)λ where
gcd(l, deg(f(x)).λ) = 1, and extended the results of [4] to multi-point codes.
In particular, they studied codes on the curves y5 = x9 + x over F81 and
y9 = x4+x2+x over F64, and attained many improvements over MinT tables.
In [2], Bartoli, Quoos and Zini computed the number of Weierstrass gaps at
two totally ramified places and applied their results to construct AG codes with
good parameters.

In [27], Tafazolian and Torres classified certain maximal curves of type Cl,r

given by yl = xr + x over Fq2 . As a result, yl = xr + x is maximal over Fq2

if l.(r − 1) divides q + 1. Another special form of Cl,r are Picard curves which
correspond to l = 3 and deg(f) = 4. These curves have been studied by many
authors, e.g. [12, 28]. Also, the authors in [16] classified Newton Polygons of
the curves y3 = x4 − x and y3 = x4 − 1 and found all fields where these curves
are maximal.

This paper is concerned with AG codes over maximal curves defined by the
affine equation Cl,r : yl = f(x), where gcd(l, r) = 1.

We mainly focus on the curve C4,3
0 : y4 = x3 + x and Picard curves given

by the equations C3,4
1 : y3 = x4 − x and C3,4

2 : y3 = x4 − 1 (by ([26], Prop.

6.3.1), the genus of Cl,r is equal to g =
(l − 1)(r − 1)

2
). To find the minimum

distance of codes in the above genus 3 curves, we use the Weil lower bound
on the number of rational points on a curve to prove that certain equations
have enough solutions in the ground field. As a result, we obtain new records
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over MinT tables [20] as well as improvements on the Goppa bound using
the order bound. In addition, we use some sub-covers of maximal Hermitian
curves and prove a necessary and sufficient condition to obtain self-orthogonal
and Hermitian self-orthogonal codes. As an example, using these Hermitian
self-orthogonal codes, we generate new non-binary quantum error-correcting
codes over [6].

The rest of this paper is organized as follows. In Section 2 we recall prelim-
inary results needed for our main results. In Section 3 we obtain parameters
of some codes on Cl,r over Fq2 , mainly focusing on genus 3 curves. Specifically,
in Subsection 3.1 and Subsection 3.2 we respectively obtain minimum distance
of codes over the curve C4,3

0 and the Picard curves C3,4
1 and C3,4

2 . Finally, in
Section 4, using some Hermitian self-orthogonal AG codes over maximal Her-
mitian curves and their sub-covers, some quantum error-correcting codes are
generated.

2. Preliminaries

Let C be an algebraic curve of genus g over Fq. Denote by C(Fq) the set
of Fq rational points on the curve, by Fq(C) the function field of C, and for a
function f ∈ Fq(C) let div(f) be the divisor of f . Let P1, ..., Pn be pairwise
distinct rational points on C and D = P1 + ... + Pn. Furthermore, let G be a
divisor such that Pi /∈ supp(G) for all i, where supp(G) stands for the support
of G. Let L(A) denote the Riemann-Roch space associated to a divisor A,
namely:

L(A) = {f ∈ Fq(C) | div(f) ≥ −A} ∪ {0}.
L(A) is a vector space over Fq and its dimension l(A) is

l(A) = deg(A) + 1− g + i(A),

where deg(A) and i(A) respectively denote the degree of A and the index of
specialty of A, see ([26], Def. 1.5.1).

A (q-array) linear code C of length n is a linear subspace of the n-dimensional
vector space Fn

q ; the elements of C are called codewords. The Hamming weight
of a codeword c ∈ Fn

q denoted by w(c) is defined as the number of its non-
zero components. The minimum distance d of a code C is the minimum of
w(c) where c varies over all non-zero codewords of C. A code with length
n, dimension k (as an Fq-vector space) and minimum distance d is called an
[n, k, d] code.

Definition 2.1. The algebraic geometric code (AG code) CL(D,G) associated
to the divisors D and G is defined as

CL(D,G) = {(z(P1), ..., z(Pn)) | z ∈ L(G)} ⊆ Fn
q .

The following proposition gives the dimension k of a CL(D,G) code and a
lower bound on its minimum distance d.



68 R. Mohammadi

Proposition 2.2. ([26], Thm. 2.2.2) CL(D,G) is an [n, k, d] code with pa-
rameters

k = l(G)− l(G−D) and d ≥ n− deg(G)

.

The bound in Proposition 2.2 on d is called Goppa bound. As a result, if
deg(G) < n, then k = l(G). Therefore, by 2.2 and singleton bound ([26], Prop.
2.1.8), n + 1 − g ≤ k + d ≤ n + 1. In addition, if 2g − 2 < deg(G) < n, then
k = deg(G) + 1− g (such codes also called strong algebraic geometric codes).

CL(D,G) is called an a-point code, if supp(G) contains exactly a-distinct
points. In this paper, we consider one-point codes.

Note that we have a trivial case: if deg(G−D) > 2g−2, then i(G−D) = 0.
Thus, k = deg(D) = n and by singleton bound, d = 1. Therefore, in this case
we have trivial MDS codes. Hence, we assume that deg(G−D) ≤ 2g − 2.

The following theorem ensures that all roots of the polynomial f(x) belong
to Fq2 . In Theorem 3.1, we will use this result to determine the exact number of
rational points that correspond to rational places ramified in Fq2(x, y)/Fq2(x).

Theorem 2.3. [27] Let q be a prime power, l ≥ 2 an integer, and f(x) be a
separable polynomial in Fq2 [x] of degree r ≥ 2 with gcd(l, rq) = 1. Let C be the
non-singular model over Fq2 of the plane curve defined by yl = f(x). Suppose
that C is maximal over Fq2 . Then l divides q + 1 if and only if f(x) has a root
in Fq2 . In this case, all the roots of f(x) belong to Fq2 .

Definition 2.4. The Weierstrass semigroup at a point P denoted by H(P ) is
defined as the semigroup of non-negative integers t, called non-gaps, such that
l(tP ) > l((t− 1)P ).

The Weierstrass semigroup plays a considerable role in the construction of
AG codes, in particular for computing the dimension of the Riemann-Roch
space associated to a one-point divisor. We have:

Proposition 2.5. ([26], proof of Thm. 1.6.8) Let m ≥ 0 be an integer. Then

l(mP ) = |i ∈ H(P ), i ≤ m|.

In other words, l(mP ) is equal to the number of non-gaps which are less than
or equal to m.

The curve yl = f(x) in Theorem 2.3 has a unique point at infinity, denoted
by P∞. By [4], the Weierstrass semigroup at P∞ is generated by l and r.

3. Codes on Cl,r : yl = f(x) over Fq2

In this section, we consider maximal curves of type Cl,r : yl = f(x) of genus
g defined over Fq2 of characteristic p for f(x) a separable polynomial of degree
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r, where gcd(r, l) = 1 and l divides q + 1. In our setting, CL(D,G) is a one-
point code constructed by divisors G and D where G is a multiple of P∞ -
the unique point at infinity - and D is the sum of the n = q2 + 2gq remaining
rational points.

By Theorem 2.3, all roots of f(x) belong to Fq2 . Therefore, corresponding
to any root of f(x) there is a rational place ramified in Fq2(x, y)/Fq2(x). There
are a1, ..., as ∈ Fq2 such that the rational place associated to x− ai, i = 1, ..., s,
splits in Fq2(x, y)/Fq2(x), where s = (q2 + 2gq − r)/l.
In the following theorem, we describe some results about the minimum distance
of certain codes over Cl,r. In addition, we show that G − D is equivalent to
some one-point divisor.

Theorem 3.1. Let Cl,r be maximal over Fq2 and D be the sum of all its affine
n = q2 + 2gq rational points over Fq2 .
(a) Suppose that m ∈ N, m ≤ (q2 + 2gq − r)/l. Then for G = mlP∞, the
minimum distance of CL(D,G) is equal to d = n− deg(G),
(b) For m as in (a), If G = (ml + r)P∞, then d = n− deg(G),
(c) For G = deg(G)P∞, G−D is equivalent to a one-point divisor.

Proof. (a) Put z =
∏m

i=1(x − ai) ∈ Fq(C). Then z ∈ L(G) and z has exactly
ml = deg(G) zeros in C(Fq2). Therefore, d ≤ n − deg(G) and by Proposition
2.2, d = n− deg(G).
(b) Similarly to (a), z = y.

∏m
i=1(x− ai) ∈ L(G) gives the result.

(c) Let z = y.
∏s

i=1(x − ai). Then, we have div(z) = D − (q2 + 2gq)P∞.
Consequently, G−D = (deg(G)−(q2+2gq))P∞−div(z). It follows that G−D

is equivalent to the one-point divisor (deg(G)− (q2 +2gq))P∞ as required. □

Using the following theorem, one can compute the exact dimension of all
codes CL(D,G) over Cl,r.

Theorem 3.2. Let G = deg(G)P∞. The dimension of CL(D,G) is equal to

k = |i ∈ H(P∞), i ≤ deg(G)| − |i ∈ H(P∞), i ≤ (deg(G)− (q2 + 2gq))|.

Proof. By part (c) of Theorem 3.1, G−D is equivalent to the one-point divisor
(deg(G)−(q2+2gq))P∞. Accordingly, Proposition 2.5 gives the exact dimension
k = l(G)− l(G−D).

□

Remark 3.3. Let g = 3 and L(G−D) be non-trivial. We give another approach
for computing the exact dimension of L(G−D) in some cases:

Case 1. deg(G−D) = 0. By our assumption, there is a non-trivial function
f ∈ L(G −D). Therefore, div(f) +G −D ≥ 0. Since deg(div(f)) = deg(G −
D) = 0, we conclude that div(f)+G−D = 0. Consequently, G−D is equivalent
to the null divisor 0 and l(G−D) = l(0) = 1.
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Case 2. deg(G−D) = 1. By Clifford’s theorem ([26], Thm. 1.6.13), we have
l(G−D) ≤ 1 +

1

2
deg(G−D). Therefore, l(G−D) = 1.

Case 3. deg(G −D) = 2. By Clifford’s theorem, l(G −D) ≤ 2. From [21],
l(G−D) = 2 if and only if one of the following conditions holds:
(a) Cl,r is hyperelliptic and G−D is a hyperelliptic divisor, or
(b) G−D is a principal divisor, or
(c) G−D is a canonical divisor.
By ([26], Def. 6.2.1), condition (a) is not true. Condition (b) is not true because
deg(G−D) ̸= 0. Moreover, condition (c) is wrong since deg(G−D) ̸= 2g − 2.
Therefore in this case, l(G−D) = 1.

The Goppa bound d ≥ n− deg(G) doesn’t give the true minimum distance
in many cases. For example, if deg(G) ≥ n, it doesn’t give any information.
Besides the Goppa bound, we recall some results about the order bound of
one-point AG codes based on Weierstrass semigroup.

Let H(P∞) = {ϱ1 = 0 < ϱ2 < ...} be the Weierstrass semigroup at P∞ and
H∗ = H(P∞) − (n + H(P∞)) = {ϱ∗1 = 0 < ... < ϱ∗n}. For i = 1, ..., n define
Λ∗
i := {ϱ ∈ H∗ | ϱ− ϱ∗i ∈ H∗}. Then for Gi = ϱ∗iP∞, the minimum distance d

of CL(D,Gi) satisfies [8]

d ≥ min{|Λ∗
1|, ..., |Λ∗

i |}.

Example 3.4. Consider the maximal curve y7 = x3 + x over F132 of genus 6.
This curve has 326 rational points. The Weierstrass semigroup at P∞ is gener-
ated by 7 and 3. Thus, H∗ = {0, 3, 6, 7, 9, 10, 12, 13, ..., 324, 326, 327, 329, 330, 333, 336}.
Use of the order bound gives the codes [325, 316,≥ 6] and [325, 320, 3] that im-
prove the Goppa bound.

Remark 3.5. The curve y7 = x3 + x over F132 , gives new records that don’t
exist in MinT tables.

3.1. Codes on C4,3
0 : y4 = x3+x over Fq2 . In this section we consider a curve

of genus 3, namely the maximal curve C4,3
0 : y4 = x3+x over Fq2 . By [27], C4,3

0

is maximal over Fq2 if and only if q ≡ −1, 3 (mod 8).
In our paper’s initial version, the results obtained by Theorem 3.6 over F49

had significant improvements compared to MinT tables. However, just recently,
MinT tables have been updated matching our results except for Table 1. These
codes still don’t exist in MinT tables.

Recall that for every i = 1, ..., s, the element ai ∈ Fq2 corresponds to the
place associated to x − ai in the rational function field. This place splits in
Fq2(x, y)/Fq2(x).

Theorem 3.6. Set s = (q2 + 2gq − 3)/4. Then we have:
(a) If G = (4m+ 1)P∞, then d = n− deg(G), for m ≤ (s− 1).
(b) If G = (4m+ 2)P∞, then d = n− deg(G), for m ≤ (s− 2).
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n deg(G) k d n deg(G) k d
91 2 1 ≥ 89 91 20 18 71
91 3 2 88 91 21 19 70
91 4 3 87 91 22 20 69
91 5 3 ≥ 86 91 23 21 68
91 6 4 85 91 24 22 67
91 7 5 84 91 25 23 66
91 8 6 83 91 26 24 65
91 9 7 82 91 27 25 64
91 10 8 81 91 28 26 63
91 11 9 80 91 29 27 62
91 12 10 79 91 30 28 61
91 13 11 78 91 31 29 60
91 14 12 77 91 32 30 59
91 15 13 76 91 33 31 58
91 16 14 75 91 34 32 57
91 17 15 74 91 35 33 56
91 18 16 73 91 36 34 55
91 19 17 72 91 37 35 54

Table 1. Minimum distance of codes on C4,3
0 : y4 = x3 + x

over F49 of dimensions less than 36

Proof. (a). One can see that for every non-zero λ ∈ Fq, the equation y2 = λ has
two solutions in Fq2 . Suppose that q−4

√
q > 5. We claim that for a non-zero λ

∈ Fq, the equation x3+x = λ2 has three solutions in Fq (and therefore in Fq2).
Suppose this claim is not true. In fact, suppose that for every non-zero λ ∈ Fq,
the equation x3 + x = λ2 has at most one solution in Fq. Then the elliptic
curve x3 + x = λ2 has at most (q − 1)/2 + 4 solutions in Fq. This contradicts
Weil’s bound 1.1. So, the assertion follows. Now suppose that q − 4

√
q ⩽ 5.

Due to the maximality of C4,3
0 , five cases arise:

Case 1. q = 3. Let λ = 2. The equation y2 = 2 gives 6 rational points
corresponding to the solutions of x3+x−4 = (x−2)(x+1+

√
−1)(x+1−

√
−1).

Case 2. q = 7. Let λ = 2. The equation y2 = 2 gives 6 rational points
corresponding to the solutions of x3+x− 4 = (x+2)(x− 1−

√
3)(x− 1+

√
3).

Case 3. q = 11. Let λ = 3. Let a = 2−1. The equation y2 = 3 gives 6
rational points corresponding to the solutions of x3 + x− 9 = (x+ 1)(x− a−√
−7a2)(x− a+

√
−7a2).

Case 4. q = 19. Let λ = 3. The equation y2 = 3 gives 6 rational points
corresponding to the solutions of x3+x−9 = (x+2)(x−1−

√
−4)(x−1+

√
−4).
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Case 5. q = 23. Let λ = 1. The equation y2 = 1 gives 6 rational points
corresponding to the solutions of x3+x−1 = (x+4)(x−2−

√
−13)(x−2+

√
−13).

For such λ, put z = (y3 − λy).
∏m−2

i=1 (x − ai) ∈ L(G). Then z has exactly
4m+ 1 zeros in C4,3

0 (Fq2). This gives (a).
(b) Let z = (y2 − λ).

∏m−1
i=1 (x− ai), and argue as in (a). □

Remark 3.7. The Weierstrass semigroup at P∞ is generated by 3 and 4 and is
equal to H(P∞) = {ϱ1 = 0, ϱ2 = 3, ϱ3 = 4, ...}. A simple computation gives
H∗ = {ϱ∗1 = 0, ϱ∗2 = 3, ϱ∗3 = 4, ϱ∗4 = 6, ϱ∗5 = 7, ..., ϱ∗88 = 90, ϱ∗89 = 92, ϱ∗90 =

93, ϱ∗91 = 96}. By the order bound, we find codes with parameters [91, 88, 3]

and [91, 84,≥ 6] which improve the Goppa bound.

3.2. Codes on C3,4
1 : y3 = x4−x and C3,4

2 : y3 = x4−1 over Fq2 . The curves
C3,4
1 : y3 = x4 − x and C3,4

2 : y3 = x4 − 1 are special forms of Picard curves.
A Picard curve over a finite field k of characteristic p > 3 can be defined as
the affine model y3 = f(x) where f(x) = x4 + a3x

3 + a2x
2 + a1x + a0 is a

polynomial over k without multiple roots in k (the algebraic closure of k). We
have the following theorem about the maximality of these curves.

Theorem 3.8. [16] Let p > 3 be a prime number and q a power of p. Then:
• The smooth complete Picard curve y3 = x4 − x is maximal over Fq2 if

and only if q ≡ −1 (mod 9).
• The smooth complete Picard curve y3 = x4 − 1 is maximal over Fq2 if

and only if q ≡ −1 (mod 12).

Now we obtain the minimum distance of some codes over the above curves
C3,4
1 and C3,4

2 .

Theorem 3.9. Set s = (q2 + 2gq − 4)/3. Then we have:
(a) If G = (3m+ 1)P∞, then d = n− deg(G), for m ≤ (s+ 1).
(b) If G = (3m+ 2)P∞, then d = n− deg(G), for m ≤ (s− 2).

Proof. (a) In this case, choose z = y.
∏m−1

i=1 (x − ai). Then z ∈ L(G) and has
3m+ 1 zeros in C3,4

1 (Fq2) and C3,4
2 (Fq2).

(b) We claim that for a non-zero λ ∈ Fq2 , the equation x4 − x = λ3 has four
solutions in Fq2 . Let q2 − 18q > 10 and suppose this claim is not true. In fact,
suppose that for every non-zero λ ∈ Fq2 , the equation x4 − x = λ3 has at most
two solutions in Fq2 . Then by the fact that there are (q2− 1)/3 possible values
for λ3, the curve x4 − x = λ3 has at most 2.(q2 − 1)/3 + 5 rational points in
Fq2 . This contradicts Weil’s bound 1.1. Therefore, the assertion follows. The
same holds for the equation x4 − 1 = λ3. Now suppose that q2 − 18q ≤ 10. By
Theorem 3.8, two cases arise:

Case 1. q = 17 for the curve y3 = x4 − x. Choose λ = 1. The equation
x4−x−1 gives 4 rational points corresponding to the roots of x4−x−1=(x+

2)(x+ 5)(x+ 5−
√
3)(x+ 5 +

√
3).
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Case 2. q = 11 for the curve y3 = x4 − 1. Choose λ = 1. The equation
x4 − 2 gives 4 rational points corresponding to the roots of x4 − 2=(x + 2 −√
−4)(x+ 2 +

√
−4)(x− 2−

√
−4)(x− 2 +

√
−4).

For such λ, put z = (y2 − λy).
∏m−2

i=1 (x − ai) ∈ L(G). Then z has exactly
3m+ 2 zeros in C3,4

1 (Fq2) and C3,4
2 (Fq2). This gives the result. □

Remark 3.10. For q2 − 18q > 10 and q2 ≡ 1(mod 3), Theorem 3.9 can be
generalized straightforwardly to every Picard curve y3 = x4 + a3x

3 + a2x
2 +

a1x+ a0 over Fq2 .

4. Application to quantum error-correcting codes

To protect information from errors in a quantum channel, quantum error-
correction has a crucial role. We refer to [1, 23] for the use of classical codes and
[3, 5, 7, 14, 15, 17, 22, 24] for algebraic geometric codes to generate quantum
error-correcting codes. Consider the maximal Hermitian curve Cq+1,q

H : yq+1 =

xq + x over Fq2 . Suppose that the ground curve is a sub-cover yl = xq + x of
Cq+1,q
H , where l divides q + 1. Accordingly, vP∞(y) = −q and vP∞(x) = −l,

where vP∞ denotes the valuation at P∞. Recall that D is the sum of all affine
n = q2 + 2gq rational points of yl = xq + x over Fq2 . By [22], the dual of
CL(D,mP∞) is equal to CL(D, (n−m+ 2g − 2)P∞).

Definition 4.1. The Hermitian inner product over Fn
q2 is defined as ⟨a, b⟩H =

⟨a, bq⟩, where ⟨., .⟩ denotes the usual inner product. The dual of a linear code
C ⊂ Fn

q2 corresponding to the Hermitian inner product is

C⊥
H = {x ∈ Fn

q2 | ⟨a, c⟩H = 0, c ∈ C}.

Consider cq by taking the componentwise q-th power of c and let Cq =

{cq | c ∈ C}. The code C is Hermitian self-orthogonal if C ⊂ C⊥
H or equiv-

alently, Cq ⊂ C⊥. We use the later condition to generate Hermitian self-
orthogonal codes. The following theorem gives a necessary and sufficient con-
dition to obtain self-orthogonal and Hermitian self-orthogonal codes. We use
the notation m = n−m+ 2g − 2.

Theorem 4.2. Using the notations as above, we have:
(a) CL(D,mP∞) is self-orthogonal if and only if m ≤ m .
(b) CL(D,mP∞) is Hermitian self-orthogonal if and only if (q+1)m ≤ n+2g−2.

Proof. (a) CL(D,mP∞) is self-orthogonal if CL(D,mP∞) ⊆ CL(D,mP∞),
that is a consequence of m ≤ m. Conversely, suppose that m > m. we
show that there is a rational function z = xiyj such that vP∞(z) ≥ −m and
vP∞(z) < −m which implies that CL(D,mP∞) ⊈ CL(D,mP∞). There are in-
tegers i1 and j1 such that i1l+j1q = 1. Consequently, mi1l+mj1q = m. Choose
i = mi1 and j = mj1. Then vP∞(z) = −m which results in vP∞(z) ≥ −m and
vP∞(z) < −m.
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(b) CL(D,mP∞) is Hermitian self-orthogonal if CL(D, qmP∞) ⊆ CL(D,mP∞),
that is a consequence of (q + 1)m ≤ n + 2g − 2. Conversely, suppose that
(q+1)m > n+2g− 2. We show that there is a rational function z = xiyj such
that vP∞(z) ≥ −m and vP∞(zq) < −m which implies that CL(D,mP∞)q ⊈
CL(D,mP∞). The remaining of the proof is similar to part (a) and we omit
the details. □

Remark 4.3. In Theorem 4.2 part (a), the converse can be obtained using
maximality of yl = xq + x over Fq2 , where q is odd. For this, the condition
m > m implies that m ≥ n/2+g. We show that there are integers i and j such
that m < il + jq ≤ m which results in CL(D,mP∞) ⊈ CL(D,mP∞). Note
that the maximum value of m occurs when m is minimum, i.e. n/2 + g, which
results in max(m) = n/2 + g − 2. Accordingly, the integer ⌊n/2 + g⌋ satisfies
⌊n/2 + g⌋ ≤ m and ⌊n/2 + g⌋ > m, where ⌊.⌋ denotes the floor function. So,
it is sufficient to show that ⌊n/2 + g⌋ ∈ H(P∞), the Weierstrass semigroup at
P∞ which is generated by l and q. By maximality of yl = xq + x over Fq2 , we
have n = q2 + 2gq. The following equalities arise:

⌊n/2 + g⌋ = ⌊q2/2⌋+ (q + 1)g

= ⌊(q2 − 1 + 1)/2⌋+ (q + 1)g

= (q − 1)/2.(q + 1) + (q + 1)g

= (q + 1)((q − 1)/2 + g).

Since l divides q + 1, we conclude that q + 1 ∈ H(P∞). It follows that
⌊n/2 + g⌋ ∈ H(P∞) as required.

We use the following theorem to obtain a lower bound of the minimum
distance of quantum codes.

Theorem 4.4. [1] Let C = [n, k, d(C)] be a classical Hermitian self-orthogonal
code over Fq2 . There exists a q-array [[n, n − 2k,≥ d(C⊥)]]q quantum code,
where d(C⊥) denotes the minimum distance of the dual code C⊥.

Corollary 4.5. Let CL(D,mP∞) be an [n, k, d(C)] AG code over Fq2 such that
(q+1)m ≤ n+2g− 2 . Then we have an [[n, n− 2k,≥ m− 2g+2]]q quantum
code.

Proof. By the Goppa bound on the dual code C⊥ = CL(D,mP∞), we conclude
that d(C⊥) ≥ m− 2g + 2. □

Remark 4.6. Let CL(D,mP∞) = [n, k, d(C)] be a Hermitian self-orthogonal
AG code and [[n, n − 2k, d]]q the corresponding quantum code. Suppose that
CL(D,mP∞) is a strong code. By singleton bound for quantum codes [23], we
have n− 2k+2d ≤ n+2 which results in d ≤ k+1 = m− g+2. On the other
hand, by Corollary 4.5, d ≥ m− 2g + 2. Subsequently, the difference between
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the upper bound and the lower bound of d equals g and the use of low genus
curves, gives quantum codes with good parameters.

Example 4.7. Consider the maximal Hermitian curve C4,3
H of genus 3 over F9.

CL(D,mP∞) is Hermitian self-orthogonal if and only if m ≤ 7. Using Magma
calculator [18], we obtain new records over [6] with parameters: [[27, 17, 3]]3,
[[27, 21, 3]]3, [[27, 23, 2]]3 and [[27, 25, 2]]3.

Example 4.8. Using C6,5
H of genus 10 over F25 and C8,7

H of genus 21 over
F49, we obtain new quantum codes over [6] with parameters: [[125, 97,≥ 5]]5,
[[125, 101,≥ 3]]5, [[125, 103,≥ 2]]5, [[343, 289,≥ 7]]7, [[343, 291,≥ 6]]7 and
[[343, 295,≥ 4]]7.
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